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Outline

• Keeping the pace with the software and hardware
• Hardware evolution
• Performance tuning
• Software selection
• What is missing?

• The DOE ACTS Collection Project
• Goals
• Current features
• Lessons learned
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Projected Performance Development

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N=1

N=500

SUM

ES

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

10 Pflop/s

100 Pflop/s

Courtesy of Erich Strohmaier
http://www.top500.org
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Automatic Tuning

• For each kernel
1. Identify and generate a space of 

algorithms
2. Search for the fastest one, by running 

them
• What is a space of algorithms?

• Depending on kernel and input, may 
vary

• instruction mix and order
• memory access patterns
• data structures 
• mathematical formulation 

• When do we search?
• Once per kernel and architecture 
• At compile time
• At run time
• All of the above

• PHiPAC:
www.icsi.berkeley.edu/~bilmes/phipac

• ATLAS:
www.netlib.org/atlas

• XBLAS:
www.nersc.gov/~xiaoye/XBLAS

• Sparsity: www.cs.berkeley.edu/~yelick/sparsity
• FFTs and Signal Processing

• FFTW: www.fftw.org
• Won 1999 Wilkinson Prize for 

Numerical Software
• SPIRAL: www.ece.cmu.edu/~spiral

• Extensions to other transforms, DSPs
• UHFFT 

• Extensions to higher dimension, 
parallelism
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What About Software Selection?

• Use a direct solver (A=LU) if
• Time and storage space acceptable
• Iterative methods don’t converge
• Many b’s for same A

• Criteria for choosing a direct solver
• Symmetric positive definite (SPD)
• Symmetric
• Symmetric-pattern
• Unsymmetric

• Row/column ordering schemes available
• MMD, AMD, ND, graph partitioning

• Hardware

bAx =  :Example

Build a preconditioning matrix K such that
Kx=b is much easier to solve than Ax=b and 
K is somehow “close” to A (incomplete LU
decompositions, sparse approximate 
inverses, polynomial preconditioners, 
preconditioning by blocks or domains, 
element-by-element, etc). See Templates for 
the Solution of Linear Systems: Building 
Blocks for Iterative Methods.



04/13/2005UC Berkeley - CS267 6

Bugs…
On February 25, 1991, during the Gulf 
War, an American Patriot Missile 
battery in Dharan, Saudi Arabia, failed 
to track and intercept an incoming 
Iraqi Scud missile. The Scud struck an 
American Army barracks, killing 28 
soldiers and injuring around 100 other 
people. The problem was an inaccurate 
calculation of the time since boot due 
to computer arithmetic errors. 

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

On June 4, 1996, an Ariane 5 rocket launched by the European Space 
Agency exploded just forty seconds after its lift-off from Kourou, French 
Guiana.  The rocket was on its first voyage, after a decade of 
development costing $7 billion. The problem was a software error in the 
inertial reference system. Specifically a 64 bit floating point number 
relating to the horizontal velocity of the rocket with respect to the 
platform was converted to a 16 bit signed integer. 

On August  23,1991, he first concrete base structure 
for the Sleipner A platform sprang a leak and sank 
under a controlled ballasting operation during 
preparation for deck mating in Gandsfjorden outside
Stavanger, Norway. The post accident investigation 
traced the error to inaccurate finite element 
approximation of the linear elastic model of the tricell
(using the popular finite element program NASTRAN). 
The shear stresses were underestimated by 47% 
leading to insufficient design. In particular, certain 
concrete walls were not thick enough. 
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Components: simple example
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The DOE ACTS CollectionThe DOE ACTS CollectionThe DOE ACTS CollectionThe DOE ACTS Collection

Goals
� Collection of tools for developing parallel applications

� Extended support for experimental software

� Make ACTS tools available on DOE computers 

� Provide technical support (acts-support@nersc.gov)

� Maintain ACTS information center (http://acts.nersc.gov)

� Coordinate efforts with other supercomputing centers

� Enable large scale scientific applications

� Educate and train 

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in less time
• More simulation in less computer time

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Higher level of support to users of the tool

• Basic
• Help with installation 
• Basic knowledge of the tools
• Compilation of user’s reports

Levels of Supporthttp://acts.nersc.govhttp://acts.nersc.gov



  

http://acts.nersc.gov

Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.ATLASLibrary 
Development

Set of tools for analyzing the performance of C, C++, Fortran and Java programs.TAU

Services for the creation of computational Grids and tools with which applications can be developed to access the Grid.Globus

Framework that enables programmers to incorporate fault-tolerance, interactive visualization and computational 
steering into existing parallel programs

CUMULVS

Code Execution

Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.Overture

Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-
memory view of distributed arrays.

Global Arrays
Code Development

General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.SuperLU

Library of high performance dense linear algebra routines for distributed-memory message-passing.ScaLAPACK

Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-
algebraic equations.

SUNDIALS

Object-oriented nonlinear optimization package.OPT++

Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.PETSc

Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic 
configuration of parameters.

Hypre

Algorithms for the iterative solution of large sparse linear systems.Aztec/Trilinos

Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained 
optimization, and general nonlinear optimization.

TAO

Numerical

FunctionalitiesToolCategory

Current ACTS Tools and their Functionalities
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ScaLAPACK: Applications

Induced current (white arrows) and charge density 
(colored plane and gray surface) in crystallized 

glycine due to an external field (Louie, Yoon, 
Pfrommer and  Canning), eigenvalue problems solved 

with ScaLAPACK.

Advanced Computational Research in Fusion (SciDAC 
Project, PI Mitch Pindzola). Point of contact: Dario Mitnik

(Dept. of Physics, Rollins College). Mitnik attended the 
workshop on the ACTS Collection in September 2000. Since 
then he has been actively using some of the ACTS tools, in 
particular ScaLAPACK, for which he has provided insightful 
feedback. Dario is currently working on the development, 

testing and support of new scientific simulation codes 
related to the study of atomic dynamics using time-

dependent close coupling lattice and time-independent 
methods. He reports that this work could not be carried out 
in sequential machines and that ScaLAPACK is fundamental 

for the parallelization of these codes.  

The international BOOMERanG 
collaboration announced results of the most detailed measurement of the 
cosmic microwave background radiation (CMB), which strongly indicated that 
the universe is flat (Apr. 27, 2000). Likelihood methods implemented in the 
MADCAP software package, using routines from ScaLAPACK, were used to 
examine the large dataset generated by BOOMERanG.

Performance of four science-of-scale applications 
that use ScaLAPACK functionalities on an IBM SP
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ScaLAPACK: software structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance 
and portability. Atlas can be 

used here for automatic tuning.

Clarity,modularity, performance 
and portability. Atlas can be 

used here for automatic tuning.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Communication 
routines targeting 

linear algebra 
operations.

Communication 
routines targeting 

linear algebra 
operations.

Parallel BLAS.Parallel BLAS.

Communication layer 
(message passing).

Communication layer 
(message passing).

http://acts.nersc.gov/scalapack

Version 1.7 released in August 2001; recent 
NSF funding for further development.

Version 1.7 released in August 2001; recent 
NSF funding for further development.
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ScaLAPACK: goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK
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• Similar to the BLAS in portability, functionality and naming:
• Level 1: vector-vector operations
• Level 2: matrix-vector operations
• Level 3: matrix-matrix operations

CALL DGEXXX( M, N, A( IA, JA ), LDA, ... )

CALL PDGEXXX( M, N, A, IA, JA, DESCA, ... )

• Built atop the BLAS and BLACS
• Provide global view of 

the matrix operands

PBLAS

BLAS

PBLAS

(Parallel Basic Linear Algebra Subroutines)

array descriptor 
(see next slides)

array descriptor 
(see next slides)

A(IA:IA+M-1,JA:JA+N-1)

JA

IA

N_

N

MM_
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BLACS

• A design tool, they are a conceptual aid in design and 
coding.

• Associate widely recognized mnemonic names with 
communication operations. This improves:
• program readability
• self-documenting quality of the code.

• Promote efficiency by identifying frequently occurring 
operations of linear algebra which can be optimized on 
various computers.

(Basic Linear Algebra Communication Subroutines)
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BLACS: basics

• Processes are embedded in a two-dimensional grid.

• An operation which involves more than one sender 
and one receiver is called a scoped operation.

10 32

0

0         

1 2 3

54 76

98 1110

1         

2         

Scope Meaning 
Row All processes in a process row participate. 
Column All processes in a process column participate. 
All All processes in the process grid participate. 

 

 

Example: 
a 3x4 grid 
Example: 
a 3x4 grid 
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* Get system information

CALL BLACS_PINFO( IAM, NPROCS )

* Get default system context

CALL BLACS_GET( 0, 0, ICTXT )

llll

* Define 1 x (NPROCS/2+1) process grid

NPROW = 1

NPCOL = NPROCS / 2 + 1

CALL BLACS_GRIDINIT( ICTXT, ‘Row’, NPROW, NPCOL )

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

* If I’m not in the grid, go to end of program

IF( MYROW.NE.-1 ) THEN
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN

CALL DGESD2D( ICTXT, 5, 1, X, 5, 1, 0 )
ELSE IF( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN

CALL DGERV2D( ICTXT, 5, 1, Y, 5, 0, 0 )
END IF

llll

CALL BLACS_GRIDEXIT( ICTXT )

END IF

CALL BLACS_EXIT( 0 )

END

BLACS: example

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

(output) process row and 
column coordinate

(out) uniquely identifies each process
(out) number of processes available

See http://www.netlib.org/blacs
for more information.

• The BLACS context is the 
BLACS mechanism for 
partitioning communication 
space. 

• A message in a context cannot 
be sent or received in another 
context. 

• The context allows the user to
• create arbitrary groups of 

processes
• create multiple 

overlapping and/or disjoint 
grids

• isolate each process grid so 
that grids do not interfere 
with each other

• BLACS context ⇔⇔⇔⇔ MPI 
communicator

send X to process (1,0)

receive X  from process (0,0)

leave context

exit from the BLACS
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ScaLAPACK: data layouts

• 1D block and cyclic column distributions

• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic used in ScaLAPACK for dense matrices
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ScaLAPACK: 2D Block-Cyclic Distribution  (1/2)

a11 a12 a15 a13 a14 

a21 a22 a25 a23 a24 

a51 a52 a55 a53 a54 

a31 a32 a35 a33 a34 

a41 a42 a45 a43 a44 
 

 

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

0 1

2 3
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ScaLAPACK: 2D Block-Cyclic Distribution  (2/2)























−−−−
−−−

−−
−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 llll

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

IF ( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF ( MYROW.EQ.0 .AND. MYCOL.EQ.1 ) THEN
A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN
A(1) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;
A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.1 ) THEN
A(1) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF
llll

CALL PDGESVD( JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
INFO )

llll

a11 a12 a15 a13 a14 

a21 a22 a25 a23 a24 

a51 a52 a55 a53 a54 

a31 a32 a35 a33 a34 

a41 a42 a45 a43 a44 
 

 

0 1

2 3

0 1

0

1

LDA is the leading 
dimension of the local 
array (see next slides)

LDA is the leading 
dimension of the local 
array (see next slides)

Array descriptor for A 
(see next slides)

Array descriptor for A 
(see next slides)



04/13/2005UC Berkeley - CS267 20

2D Block-Cyclic Distribution

http://acts.nersc.gov/scalapack/hands-on/datadist.html
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2D Block-Cyclic Distribution: pros and cons

• Ensures good load balance  → performance and scalability
(analysis of many algorithms to justify this layout).

• Encompasses a large number of data distribution schemes
(but not all).

• Needs redistribution routines to go from one distribution to 
the other.
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ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor
• The array descriptor:

• Contains  information required to establish  mapping between a 
global array entry and its corresponding process and memory location 
(uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data 

distributions or matrix types.

• User must distribute all global arrays prior to the invocation 
of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to other 

processors (may require message-passing for this).
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Array Descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

1
2
3
4 
5

6

7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A

NB_A

RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)

(global)

(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACScontext handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of 
array  A.
Blocking factor used to distribute the columns 
of array A.
Process row over which the first row of the 
array A is distributed.
Process column over which the first column of 
the array A is distributed.
Leading dimension of the local array.
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Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4 

5

6

7                 

DTYPE_A

CTXT_A
N_A
NB_A

CSRC_A

LLD_A 

−−−−

(global)

(global)
(global)
(global)

(global)

(local)

−−−−

Descriptor type DTYPE_A=501 for 1 x Pc process 
grid for band and tridi agonal matrices block-column 
distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of 
array A.
Process column over which the first column of the 
array A is distributed.
Leading dimension of the local array. For the 
tridiagonal subroutines, this entry is ignored.
Unused, reserved.
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Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4 
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_B=502 for Pr x 1 process grid 
for block -row distributed matrices .
BLACS context handle.
Number of rows in global array B
Blocking factor used to distribute the rows of array B.
Process row over which the first row of the array B is 
distributed.
Leading dimension of the local array. For the 
tridiagonal subroutines, this entry is i gnored.
Unused, reserved.
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ScaLAPACK: Functionality

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

Symmetric
General
Generalized BSPD
SVD

SolutionReductionExpert 
Driver

Simple 
Driver

Ax = λλλλx or Ax = λλλλBx

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxTriangular

Iterative 
Refinement

Conditioning 
Estimator

InversionSolveFactorExpert 
Driver

Simple 
Driver

Ax = b



On line tutorial: http://acts.nersc.gov/scalapack/hands-on/main.html



04/13/2005UC Berkeley - CS267 28

Contents of hands-on/example0

pdgesvddrv.f: reads a (full) matrix A from a file, distributes A among the available processors and then 
call the ScaLAPACK subroutine PDGESVD to computed the SVD of A, A=USV T. It requires the file 
pdgesvddrv.dat, which should contain: line 1, the name of the file where A will be read from; line 2, 
the number of rows of A; line 3: the number of columns of A. Considering the file A.dat:

• if m=n=10 the results are given in the file A.SVD
• if m=10, n=7: diag(S)=[ 4.4926  1.4499  0.8547  0.8454  0.6938  0.4332  0.2304 ]
• if m=7, n=10: diag(S)=[4.5096  1.1333 1.0569  0.8394  0.8108  0.5405  0.2470 ]

pddttrdrv.c (pddttrdrv.f):  illustrates the 
use of the ScaLAPACK routines 
PDDTTRF and PDDTTRS to factor and 
solve a (diagonally dominant) tridiagonal 
system of linear equations Tx = b. After 
compilation, it can be executed with
llsubmit pddttrdrv.job.

pdpttr_2.c (pdpttr_2.f): illustrates the use 
of the ScaLAPACK routines PDPTTRF 
and PPPTTRS to factor and solve a 
symmetric positive definite tridiagonal 
system of linear equations Tx = b, in two 
distinct contexts. After compilation, it can 
be executed with llsubmit pdpttr_2.job.



/**********************************************************************/
/* This program illustrates the use of the ScaLAPACK routines PDPTTRF */
/* and PPPTTRS to factor and solve a symmetric positive definite */
/* tridiagonal system of linear equations, i.e., T*x = b, with */
/* different data in two distinct contexts. */
/**********************************************************************/

/* a bunch of things omitted for the sake of space */

main()
{

/* Start BLACS */
Cblacs_pinfo( &mype, &npe );
Cblacs_get( 0, 0, &context );
Cblacs_gridinit( &context, "R", 1, npe );
/* Processes 0 and 2 contain d(1:4) and e(1:4) */
/* Processes 1 and 3 contain d(5:8) and e(5:8) */
if ( mype == 0 || mype == 2 ){

d[0]=1.8180; d[1]=1.6602; d[2]=1.3420; d[3]=1.2897;
e[0]=0.8385; e[1]=0.5681; e[2]=0.3704; e[3]=0.7027;

}
else if ( mype == 1 || mype == 3 ){

d[0]=1.3412; d[1]=1.5341; d[2]=1.7271; d[3]=1.3093;
e[0]=0.5466; e[1]=0.4449; e[2]=0.6946; e[3]=0.0000;

}
if ( mype == 0 || mype == 1 ) {

/* New context for processes 0 and 1 */
map[0]=0; map[1]=1;
Cblacs_get( context, 10, &context_1 );
Cblacs_gridmap( &context_1, map, 1, 1, 2 );
/* Right-hand side is set to b = [ 1 2 3 4 5 6 7 8 ] */
if ( mype == 0 ) {

b[0]=1.0; b[1]=2.0; b[2]=3.0; b[3]=4.0;
}
else if ( mype == 1 ) {

b[0]=5.0; b[1]=6.0; b[2]=7.0; b[3]=8.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_1; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_1; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf( &n, d, e, &ja, desca, af, &laf,

work, &lwork, &info );
/* Solution */
pdpttrs( &n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info );
printf( "MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}

else {
/* New context for processes 0 and 1 */
map[0]=2; map[1]=3;
Cblacs_get( context, 10, &context_2 );
Cblacs_gridmap( &context_2, map, 1, 1, 2 );
/* Right-hand side is set to b = [ 8 7 6 5 4 3 2 1 ] */
if ( mype == 2 ) {

b[0]=8.0; b[1]=7.0; b[2]=6.0; b[3]=5.0;
}
else if ( mype == 3 ) {

b[0]=4.0; b[1]=3.0; b[2]=2.0; b[3]=1.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_2; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_2; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf( &n, d, e, &ja, desca, af, &laf,

work, &lwork, &info );
/* Solution */
pdpttrs( &n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info );
printf( "MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}
Cblacs_gridexit( context );
Cblacs_exit( 0 );

}

Using Matlab notation:

T = diag(D)+diag(E,-1)+diag(E,1)

where

D = [ 1.8180 1.6602 1.3420 1.2897 1.3412 1.5341 1.7271 1.3093 ]
E = [ 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946 ]

Then, solving T*x = b,

if b = [ 1 2 3 4 5 6 7 8 ]
x = [ 0.3002 0.5417 1.4942 1.8546 1.5008 3.0806 1.0197 5.5692 ]

if b = [ 8 7 6 5 4 3 2 1 ]
x = [ 3.9036 1.0772 3.4122 2.1837 1.3090 1.2988 0.6563 0.4156 ]
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Global Arrays (GA) wrappers

• Simpler than message-passing for many 
applications

• Complete environment for parallel code 
development

• Data locality control similar to distributed 
memory/message passing model

• Compatible with MPI

• Scalable

Distributed Data: data is explicitly 
associated with each processor, 
accessing data requires specifying the 
location of the data on the processor and 
the processor itself.
Shared Memory: data is an a globally 
accessible address space, any processor 
can access data by specifying its location 
using a global index.
GA: distributed dense arrays that can be 
accessed through a shared memory-like style.

http://www.emsl.pnl.gov/docs/global/ga.html
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Who Benefits from these tools? 

... More Applications …

http://acts.nersc.gov/AppMathttp://acts.nersc.gov/AppMat

Enabling sciences
and discoveries…

with
high performance 
and scalability...
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TAU - Tuning and Performance Analysis

• Multi-level performance instrumentation
• Multi-language automatic source instrumentation

• Flexible and configurable performance measurement
• Widely-ported parallel performance profiling system

• Computer system architectures and operating systems
• Different programming languages and compilers

• Support for multiple parallel programming paradigms
• Multi-threading, message passing, mixed-mode, hybrid

• Support for performance mapping
• Support for object-oriented and generic programming
• Integration in complex software systems and applications



04/13/2005UC Berkeley - CS267 33

Study Case: Electronic Structure Calculations Code 

…
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Using TAU_COMPILER in previous example
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• Libraries written in different 
languages.

• Different pieces of the code evolve at 
different rates

• Swapping competing 
implementations of the same idea and 
testing without modifying the code
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Challenges in the Development of Scientific Codes
• Productivity

• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications
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• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
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Peak performance is skyrocketing
� In 1990s, peak performance increased 100x; in 

2000s, it will increase 1000x
However

� Efficiency for many science applications declined 
from 40-50% on the vector supercomputers of 
1990s to as little as 5-10% on parallel 
supercomputers of today
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installation 

details, examples, 
etc

Agenda, 
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Goals and other 
relevant information

Points of 
contact

Search 
engine

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers
• Reduce user’s code development 

time that sums up in more 
production runs and faster and 
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and 

distribution of high performance 
computing expertise 

• Provide better scientific parameters 
for procurement and 
characterization of specific user 
needs
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� Compframe 2005
� ACTS Workshop 2005


